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Abstract

We analyse the possibility of using the two-qubit output state from the Buzek–
Hillery quantum copying machine (not necessarily a universal quantum cloning
machine) as a teleportation channel. We show that there is a range of values of
the machine parameter ξ for which the two-qubit output state is entangled and
violates the Bell-CHSH inequality and for a different range it remains entangled
but does not violate the Bell-CHSH inequality. Further, we observe that for
certain values of the machine parameter the two-qubit mixed state can be used
as a teleportation channel. The use of the output state from the Buzek–Hillery
cloning machine as a teleportation channel provides an additional appeal to the
cloning machine and motivation for our present work.

PACS number: 03.67.−a

1. Introduction

In 1993, an international team of six scientists including Charles Bennett [4] discovered a new
aspect of quantum inseparability—teleportation. Teleportation is purely based on classical
information and non-classical Einstein–Podolsky–Rosen(EPR) correlations. The basic idea is
to use a pair of particles in a singlet state shared by distant partners Alice and Bob to perfom
successful teleportation of an arbitrary qubit from the sender Alice to the receiver Bob. There
was a question regarding what value of fidelity of transmission of an unknown state can assure
us about the non-classical character of the state forming the quantum channel. It has been
shown that the purely classical channel can give at most F = 2

3 [3, 5, 10].
Then Popescu raised basic questions concerning a possible relation between teleportation,

the Bell-CHSH inequalities [6] and inseparability: ‘what is the exact relation between Bell’s
inequalities violation and teleportation?’[3]. In this paper, we probe these relations for the
two-qubit mixed entangled state arising from the B–H quantum cloning machine.

4 Author to whom any correspondence should be addressed.

1751-8113/08/415302+05$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/41/415302
mailto:nirmanganguly@rediffmail.com
http://stacks.iop.org/JPhysA/41/415302


J. Phys. A: Math. Theor. 41 (2008) 415302 S Adhikari et al

Bell’s inequalities are relations between conditional probabilities valid under the locality
assumption. Hence, a priori they have nothing to do with quantum mechanics. However,
it is the fact that quantum mechanics predicts a violation of these conditions which makes
them interesting. Werner [9] gave an example of an entangled state described by the density
operator ρW = p|ψ−〉〈ψ−| + 1−p

4 I , where |ψ−〉 = 1√
2
(|01〉 − |10〉) and I is the identity

operator in the four-dimensional Hilbert space, which does not violate the Bell inequality for
1
3 < p < 1√

2
. Interestingly in this work, we also find an example of an entangled state that

does not violate Bell’s inequality. A natural question arises concerning teleportation, whether
states which violate the Bell-CHSH inequalities are suitable for teleportation. Horodecki et
al [2] showed that any mixed two spin- 1

2 state which violates the Bell-CHSH inequalities is
suitable for teleportation.

With the advent of a quantum cloning machine we were introduced to an entanglement
between the output and input states. The proposition of a universal quantum copying machine
by Buzek and Hillery [1] presented us with a cloning machine which is independent of the
input state. However, as was quite expected the copy and original which appear at the output
remained entangled.

Our investigation starts from the idea of using the two-qubit entangled state which comes
as an output of the B–H cloning machine as a teleportation channel. Central to this idea is
the possible utility of a mixed entangled state as a teleportation channel, which motivates us
for this work. Our analysis results in a certain range of the machine parameter ξ for which
the entangled state can be used as a teleportation channel. For ξ = 1

2 , the output state reduces
to a maximally entangled pure state that can be used as a teleportation channel faithfully as
expected. Altogether this work provides an additional appeal for the B–H cloning machine.

Our work is organized as follows: in the following section, we discuss the viability of
using the output state given by the B–H cloning machine as a teleportation channel. Finally,
we summarize our work.

2. Analysis of the output of the Buzek-Hillery copying machine

In this section, we study the viability of the entangled output copies of the Buzek–Hillery
cloning machine [1] as a teleportation channel.

The cloning transformation for the copying procedure [1] is given by

|0〉a|0〉b|Q〉x −→ |0〉a|0〉b|Q0〉x + [|0〉a|1〉b + |1〉a|0〉b]|Y0〉x (1)

|1〉a|0〉b|Q〉x −→ |1〉a|1〉b|Q1〉x + [|0〉a|1〉b + |1〉a|0〉b]|Y1〉x. (2)

The unitarity and the orthogonality of the cloning transformation give

x〈Qi |Qi〉x + 2x〈Yi |Yi〉x = 1 (i = 0, 1) (3)

x〈Y0|Y1〉x = x〈Y1|Y0〉x = 0. (4)

Here the copying machine state vectors |Yi〉x and |Qi〉x are assumed to be mutually orthogonal,
so are the state vectors {|Q0〉, |Q1〉}.

Let us consider a quantum state which is to be cloned,

|χ〉 = α|0〉 + β|1〉, (5)

where α2 + β2 = 1.
Here we confine ourselves to a limited class of input states (5), where α and β are real.

2
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After using the cloning transformation (1–2) on the quantum state (5) and tracing out
the machine state vector, the two-qubit reduced density operator describing the two clones is
given by

ρout
ab = α2(1 − 2ξ)|00〉〈00| +

αβ√
2
(1 − 2ξ)|00〉〈+| +

αβ√
2
(1 − 2ξ)|+〉〈00|

+ 2ξ |+〉〈+| +
αβ√

2
(1 − 2ξ)|+〉〈11| +

αβ√
2
(1 − 2ξ)|11〉〈+| + β2(1 − 2ξ)|11〉〈11|

(6)

where we have used the following notations:
x〈Y0|Y0〉x = x〈Y1|Y1〉x = ξ,x 〈Y0|Q1〉x = x〈Q0|Y1〉x = x〈Q1|Y0〉x = x〈Y1|Q0〉x = η

2 , |+〉 =
1√
2
(|01〉 + |10〉). Also, we have used the relation η = 1 − 2ξ in equation (6) to make the

distortion between the state ρid and the one-qubit reduced state ρout
a input state independent.

The necessary and sufficient condition for a state ρ to be inseparable is that at least one
of the eigen values of the partially transposed operator defined as ρT

mμ,nν = ρmν,nμ is negative
[8, 7]. This is equivalent to the condition that at least one of the two determinants

W3 =
∣∣∣∣∣∣
ρ00,00 ρ01,00 ρ00,10

ρ00,01 ρ01,01 ρ00,11

ρ10,00 ρ11,00 ρ10,10

∣∣∣∣∣∣
and W4 =

∣∣∣∣∣∣∣∣

ρ00,00 ρ01,00 ρ00,10 ρ01,10

ρ00,01 ρ01,01 ρ00,11 ρ01,11

ρ10,00 ρ11,00 ρ10,10 ρ11,10

ρ10,01 ρ11,01 ρ10,11 ρ11,11

∣∣∣∣∣∣∣∣
is negative.

Now we investigate the inseparability of the two-qubit density operator ρout
ab for different

intervals of the machine parameter ξ .
For the density matrix ρout

ab , we calculate the determinants W3 and W4, which are given by

W3 = α2ξ(1 − 2ξ)

2
[2ξ − β2(1 − 2ξ)], W4 = 1

2
[α2β2ξ(1 − 2ξ)2(6ξ − 1) − 2ξ 4.] (7)

Further, we note that the relation η = 1 − 2ξ reduces the Schwarz inequality η � 2(ξ − 2ξ 2)
1
2

to the inequality 1
6 � ξ � 1

2 . So we consider the following cases:

(i) for ξ = 1
6 and ξ = 1

2 , it is clear that W4 < 0 for all α, β and hence the two-qubit density
operator ρout

ab is inseparable for all α, β.
(ii) In the interval 1

6 < ξ < 1
2 , there exist sub-intervals of the machine parameter ξ for which

the density operator ρout
ab is inseparable for some interval of α2. Now we discuss two

subcases below where the range of α2 is given for which ρout
ab is inseparable.

(iia) In the interval 0 < α2 <
1−4ξ

1−2ξ
, the determinant W3 < 0 and hence ρout

ab is inseparable

when the machine parameter lies in the interval 1
6 < ξ < 1

4 .

(iib) Moreover, in the interval 1−4ξ

1−2ξ
< α2 < 1

2 −
√

A2−8Aξ 4

2A
where A = ξ(6ξ −1)(1−2ξ)2,

we find that the determinant W3 > 0 but W4 < 0 and hence in this case the state ρout
ab is

inseparable when the machine parameter ξ lies in the range 3−√
5

4 < ξ < 1
4 .

An arbitrary state of a two-qubit system can be represented as

ρ = 1

4

⎡
⎣I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3∑
i,j=1

λijσi ⊗ σj

⎤
⎦ , (8)

where ρ acts on the Hilbert space H = H1 ⊗ H2, I stands for the identity operator, {σi}3
i=1 are

the standard Pauli matrices, r, s are vectors in R3, r · σ = ∑3
i=1 riσi and s · σ = ∑3

i=1 siσi .
The coefficients λij = Tr(ρσi ⊗ σj ) form a real 3 × 3 matrix which we shall denote by C(ρ).

3



J. Phys. A: Math. Theor. 41 (2008) 415302 S Adhikari et al

Further, it is known that the state which does not violate the Bell-CHSH inequality
must satisfy M(ρ) � 1, where M(ρ) = maxi>j (ui + uj ), ui and uj are the eigen values of
U = Ct(ρ)C(ρ) [11].

In our case, the elements of the correlation matrix C(ρout
ab ) obtained for the density operator

ρout
ab are

c11 = 2ξ, c12 = 0, c13 = 0, c21 = 0, c22 = −2ξ,

c23 = 0, c31 = 0, c32 = 0, c33 = 1 − 4ξ. (9)

The eigen values of the matrix U = Ct
(
ρout

ab

)
C

(
ρout

ab

)
are

u1 = u2 = 4ξ 2, u3 = 1 − 8ξ + 16ξ 2.
Now we are in a position to discuss the different cases that establish a relation between the
Bell-CHSH inequality violation and inseparability.

Case-I. If u1 > u3 then the machine parameter ξ lies between 1
6 and 1

2 .
In 1

6 < ξ < 1
2
√

2
,M(ρ) = 8ξ 2 < 1 and hence in this interval the two-qubit density

operator does not violate the Bell-CHSH inequality. However in the interval 1
2
√

2
< ξ < 1

2 ,

M(ρ) = 8ξ 2 > 1 and hence it violates the Bell-CHSH inequality.

Case-II. If u1 = u2 = u3 = 1
9 (which happens when ξ = 1

6 ), then M(ρ) < 1, and hence the
two-qubit entangled state does not violate the Bell-CHSH inequality.

Case-III. If u1 = u2 = u3 = 1 (which happens when ξ = 1
2 ), then M(ρ) > 1, and hence the

two-qubit entangled state violates the Bell-CHSH inequality.

For any mixed spin- 1
2 state ρ the teleportation fidelity [2] amounts to Fmax = 1

2 (1 + 1
3N(ρ)),

where N(ρ) = ∑3
i=1

√
ui .

We split the interval 1
6 � ξ < 1

2 into two sub-intervals 1
6 � ξ � 1

4 and 1
4 < ξ < 1

2 . We
notice that in the interval 1

6 � ξ � 1
4 , the teleportation fidelity does not cross the classical

limit 2
3 . Hence for this interval we cannot use ρout

ab as a teleportation channel. However, in the
interval 1

4 < ξ < 1
2 the fidelity Fmax crosses 2

3 . So for this interval of ξ , the output state ρout
ab

can be used as a teleportation channel.
We note that in the case ξ = 1

2 , ρout
ab reduces to a maximally pure entangled state which can be

used in teleportation with fidelity 1.

3. Conclusions

To summarize, we have cited an example of a two-qubit entangled state (output of the Buzek–
Hillery cloning machine) which does not violate the Bell-CHSH inequality for some interval
of the machine parameter ξ . Also, we have shown that the two-qubit entangled state does
violate the Bell-CHSH inequality for some interval of the machine parameter ξ different from
the previous one. In some of the cases, we found that the two-qubit entangled state does act
as a useful quantum channel for the teleportation protocol. This work adds a special feature
to the Buzek–Hillery quantum cloning machine.
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